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This paper details experiments in the region where an impulsively started moving
wall slides under a stationary wall. The experiments were conducted over a Reynolds
number range of ReΓ = 5 × 102–5 × 105. The length scale for the Reynolds number
is defined as the distance the wall has moved from rest and increases during an
experiment. Experiments show that for ReΓ > 103 a vortex forms close to the junction
where the moving wall meets the stationary one. The data shows that while the
vortical structure is small, in relation to the fixed-apparatus length scale, the size of
the vortex normalized with respect to the wall speed and viscosity scales in a universal
fashion with respect to ReΓ . The scaling rate is proportional to t5/6 when the Reynolds
number is large. The kinematic behaviour of the vortex is related to the impulse that
the moving wall applies to the fluid and results in a prediction that the transient
structure should grow as t5/6 and the velocity field should scale as t−1/6. The spatial-
growth prediction is in good agreement with the experimental results and the velocity
scaling is moderately successful in collapsing the experimental data.

For ReΓ > 2 × 104 three-dimensional instabilities appear on the perimeter of the
vortical structure and the flow transitions from an unsteady two-dimensional flow
to a strongly three-dimensional vortical structure at ReΓ � 4 × 104. The instability
mechanism is centrifugal. The formation and growth of these instability structures and
their ingestion into the primary vortex core causes the three-dimensional breakdown
of the primary vortex. Two movies are available with the online version of the paper.

1. Introduction
1.1. Background

When an impulsively started moving wall slides under a stationary wall the potential
exists for a vortical structure to develop close to their junction. The formation
mechanism for this vortex is that when the wall is set into motion a Stokes layer
develops over the moving surface and this layer is driven, by shear forces, past the
singularity at the junction and over the stationary wall. Vorticity of opposite sign then
develops over the stationary wall to enforce the no-slip condition. The flow field over
the stationary wall initially resembles an unsteady wall jet. If the Reynolds number
ReΓ = UwL/ν, where L is the distance that the wall has moved from rest and Uw

is the wall speed, is large enough then the jet separates and rolls into a vortex. A
schematic of the development process is shown in figure 1(a).

This type of vortical structure is generated in a range of industrial situations, the
most important being at the head of a piston as it moves through a cylinder; see
Obokata & Okajima (1992) and Guezet & Kageyama (1997). Experimental studies
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Figure 1. (a) A two-dimensional schematic of vortex development at the junction of a moving
and a stationary surface and (b) the appearance of a three-dimensional spanwise instability
wave. See also figure 2.

examining the development of this structure have typically consisted of an apparatus
that uses a piston moving through a cylinder. This results in the formation of a
vortex ring (or piston vortex) in front of the piston. Historically the use of a piston–
cylinder geometry was motivated by the desire to analyse the flow inside an internal
combustion engine. Hughes & Gerrard (1971) studied piston-vortex development for
low Reynolds number, 2 × 102 <ReΓ < 4 × 103. They suggested a minimum Reynolds
number for vortex formation of ReD = 200, where the length scale in ReD is the piston
diameter. In terms of ReΓ the data of Hughes & Gerrard (1971) would suggest that
for ReΓ � 1–500 a vortex forms.

Tabaczynski, Hoult & Keck (1970) conducted experiments examining the develop-
ment of the piston vortex for high Reynolds number, ReΓ = 103–105. The piston vortex
was present in all their visualizations and they identified the transition of the vortex
from a laminar to a turbulent structure at ReΓ � 1.5 × 104. Self-similar relationships
were proposed for the spatial growth of the ‘area’ of the vortex in the laminar and
turbulent regimes. These relationships applied when the size of the vortex ring was
small in relation to the piston diameter. The experiments of Allen & Chong (2000)
measured the developing vorticity field of the piston vortex for the Reynolds number
range 5 × 102 < ReΓ < 3 × 104. It was found that the strength of the piston vortex was
about 25% of the strength of the circulation swept into the corner region by the
moving wall. This indicates that significant vorticity cancellation was occurring with
the opposite-sign vorticity that develops on the piston face.

An analytic solution for the steady viscous flow field in the junction region was
developed by Taylor (1960). This solution is often referred to as the ‘scraping-corner
solution’. Taylor’s solution geometry consisted of a scraper orientated at 90 degrees
to the moving wall. However, it is trivial to modify the solution so that the scraper is
in-plane with the moving wall, and the salient features of the solution remain: regions
of opposite-sign vorticity in the corner-junction region. The region of validity of this
viscous similarity solution is rUw/ν � 1, where r is the radial distance from the corner
junction. At the junction of the moving and stationary surfaces the solution is singular
in the pressure and the vorticity. The singularity is physically relieved by the presence
of a small gap between the moving surfaces. Hancock, Lewis & Moffatt (1981)
extended this steady solution to include inertial effects. The range of validity of the
inertial expansion is rUw/ν � 5. Again this solution can be simply modified so that
the scraper is in-plane with the moving wall and the salient features of the solution
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remain unchanged. The velocity profile over the stationary plate, with the inertial
correction, appears similar to that of a wall jet. Wall jets consist of an inner layer
that resembles a wall boundary layer and an outer layer that resembles a free shear
layer. Both these layers are unstable at sufficiently high Reynolds number. Bajura &
Catalano (1975) studied the instability and lift-off of the wall jet and suggested that
they were the result of a phase dislocation of the instability structures in the inner
and outer layers. In their experiments the streamwise location where lift-off occurred
was an order of magnitude greater than the size of the separating structure, i.e. the
jet was able to travel a considerable distance before separation occurred. However,
as separation in the impulsively started experiments of Tabaczynski et al. (1970) and
Allen & Chong (2000) occurred almost immediately, it was not a result of the ‘lift-off’
mechanism described above. Conlon & Lichter (1995) studied the transient start-up
of a wall jet in order to clarify the behaviour of the head of the jet. The transient flow
was characterized by the formation of either a dipole or a monopole at the head of
the jet. They established that the relative strengths of the vorticity distribution in the
outer and inner regions of the wall jet were important in determining whether a dipole
or monopole formed during the start-up process. The features of their simulations,
the roll-up of the outer-layer vorticity into a coherent structure and the stretching
of the secondary vorticity, the near-wall layer, around the periphery of the primary
vortex have a strong resemblance to the experimental work of Allen & Chong (2000).
Conlon & Lichter (1995) noted that linear stability methods were not relevant to the
description of the transient problem and that the initial formation of the rotational
structure may be related to the instability that forms on a vorticity front as it enters
a region of irrotational flow; see Stern & Pratt (1985). Conlon & Lichter (1995)
commented that at low Reynolds numbers viscous diffusion acts quickly enough to
prevent either monopole or dipole formation.

A full description of the transient requires an understanding of the transition of the
flow field from a viscous flow to a flow dominated by inertial effects. The behaviour of
viscous starting jets was considered by Cantwell (1986), who calculated the evolving
topology of the flow field resulting from the application of a time-varying point force
to an infinite fluid domain. In the absence of external length scales he was able to
calculate the self-similar topology of the flow field and relate its evolution to the
non-dimensional impulse (or Reynolds number ReI ) applied to the flow. Two critical
Reynolds numbers were calculated that represent the transition between three distinct
flow topologies. In order to interpret these bifurcations he calculated the entrainment
diagram for the jet, based on particle-path equations. At low ReI the topology of the
leading front of the starting jet did not possess a rotating head; see diagram 1 in
figure 2(c) of Cantwell (1986). The particle paths appear to converge toward a single
node located on the horizontal axis. At ReI � 1.2 a bifurcation occurred from the
single node to an on-axis saddle and off-axis nodes; see diagram 2; in figure 2(c)
of Cantwell (1986). As the Reynolds number was further increased, to ReI � 2.2,
a second transition occurred that resulted in the transformation of the nodes into
foci; see diagram 3 in figure 2(c) of Cantwell (1986). It is the second bifuraction that
represents the initiation of the characteristic vortex roll-up associated with the head
of a starting jet. Cantwell’s paper has important implications for the current study as
it suggests a transition pathway, from an impulsively started non-rotating viscous jet
into a jet with a leading vortical structure. Although the vortex of the current study
is not generated by a point force, there are many features in common with Cantwell’s
study, such as the absence of an external-apparatus length scale and the dependence
of the transition on a developing Reynolds number.
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1.2. Instability development

The experiments of Tabaczynski et al. (1970) document the transition of the piston
vortex from a laminar to a turbulent structure. Although the mechanism for transition
was not discussed, the rate of growth of the turbulent structure was more rapid than
that of the laminar structure. This was due to entrainment by the three-dimensional
instabilities that appear on the periphery of the structure, which is similar to the
growth mechanism of a turbulent vortex ring; see Glezer & Coles (1990). The
experiments of Allen & Auvity (2002) identified the formation of an instability on
the piston vortex. The instability possessed a well-defined wavelength. The instability
appeared to be forming on the outer turn of the piston vortex rather than in the
core. It was postulated that this instability was centrifugal in nature and satisfied the
criteria for the instability of a wall jet on a concave surface, as described in Floryan
(1986).

In a broader contex this class of transient vortical structure also occurs in shear- or
lid-driven cavity flows. As the shear layer or moving lid interacts with the downstream
corner of the cavity, a transient vortical roller is formed which eventually leads to
a steady rotational cavity flow. Cavity flows exhibit a range of steady topologies
depending on the cavity Reynolds number. Typically the flow is described in terms of
a primary eddy and viscous corner eddies; see Pan & Acrivos (1967). The primary eddy
is the analogue of the junction vortex described in the current paper. Cavity flows of
sufficiently high Reynolds number display an instability that has been labelled Taylor–
Görtler-like (TGL); see Koseff & Street (1984a) and Aidun, Triantafillopoulos &
Benson (1991). The mechanism for the formation of these instabilities has been
attributed to the concave region that exists between the primary vortex and the viscous
corner eddy. The linearised instability calculations of Albensoeder, Kuhlmann & Rath
(2001), for a cavity with a large depth-to-width ratio, indicate that the region of high
shear between the primary inviscid eddy and the separation point on the rigid
wall, downstream of the moving lid, is a region of high streamline curvature and
velocity gradients and a source of centrifugal instability. However, in cavity-flow
studies little attention has been paid to the development of spanwise instabilities
during the transient start-up. Koseff & Street (1984) identified an instability on the
transient structure that they classified as Taylor cells and noted that the wavelength
of the instability at this point was different from its value when the cavity reached a
steady-state condition. Vogel, Hirsa & Lopez (2003) and Blackburn & Lopez (2003)
examined the stability of cavity flows driven by a lid moving in a sinusoidal form.
Vogel, Hirsa & Lopez (2003) noted the formation of spanwise cellular instabilies, in
the shear layer that wraps around the primary vortex roller. These structures appear
qualitatively similar to the piston vortex instability observed by Allen & Auvity (2002).
The formation of these instability structures in Vogel et al. (2003) was dependent on
the Reynolds number, ReH = UmaxH/ν, where H is the cavity depth. They estimated
that the Reynolds number for transition in the steadily driven wall case, i.e. as T → ∞
where T is the floor period, was ReH � 325, which is in agreement with the stability
calculations of Albensoeder & Kuhlmann (2002). Blackburn & Lopez (2003) utilized
Floquet analysis to study the development of these instabilities. They found that the
primary vortex is unstable to two synchronous modes, a long-wavelength mode that
scales as the size of the vortex core and a short-wavelength instability formed on
the shear layer wrapped around the vortex roller. The short-wavelength instability
was classified as centrifugal, scaling as the vorticity thickness of the shear layer and
similar in form to the braid-type streamwise instabilities that form in between the
rollers of a shear layer. A general conclusion that can be drawn from these instability
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Figure 2. Schematic of the experimental apparatus.

studies is that secondary vorticity that forms on wall surfaces to enforce the no-slip
condition is prone to separate if the Reynolds number is high enough and that these
layers of secondary vorticity are prone to centrifugal instabilities.

The goals of the current study are to examine the formation of the transient
structure mentioned above, in an experimental configuration where apparatus length
scales are absent, to test for self-similar behaviour and to classify the transition
mechanism of three-dimensional instabilities on the primary vortex structure.

2. Experimental apparatus
The experimental apparatus consisted of a moving left 30 cm wide and 150 cm long.

The belt fully immersed in a water tank, was set in motion with a programmable
stepper motor. The stationary plate consisted of an acrylic sheet, with an edge angle
machined to 15 degrees. Attached to the edge was a 0.015 cm thick, 2.5 cm wide
strip of brass. During experiments the shim was in contact with the moving belt
and formed a junction with minimal step. The dimensions of the apparatus ensured
that the spatial scale of a vortex cross-section, 0.5 → 5 cm was almost an order of
magnitude smaller than the width and depth of the tank. Experiments were conducted
in both water and air to achieve a large Reynolds-number range. A schematic of the
apparatus is shown in figure 2.

The range of developing Reynolds number ReΓ achievable with this apparatus
was 5 × 102 <ReΓ < 5 × 105. This range of Reynolds numbers allows observation
of the transition of the structure from laminar to turbulent behaviour. For the
experiments in water the fluid temperature was maintained at 21 ± 0.5◦C (laboratory
temperature). It was necessary to have the temperature differential between the tank
and surroundings as small as possible, as the vortex trajectory was found to be very
sensitive to the presence of temperature-gradient-induced convection. It was noted
that if the junction between the plate and belt was poor, i.e. if a gap existed or
the thickness of the lip on the stationary plate was the order of the boundary-layer
thickness, a Kelvin–Helmholtz-like instability would appear on the outer turn of the
vortex. By making the lip from shim stock and having it in continual contact with
the moving plate this instability was suppressed. The driving belt was a tensioned
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rubber belt one-quarter of an inch thick. The surface of the belt was smooth, with
a mean roughness amplitude of 0.05mm, significantly smaller than the shim-stock
thickness. The experimental technique involved using a laser sheet generated with an
argon-ion laser. Fluorescent dye and smoke were used to visualize the motion and
size of the vortex core and particle-image velocimetry (PIV) data was collected to
provide information about the velocity field of the vortex.

3. Results
3.1. Self-similarity of the junction vortex

During an experiment, the circulation swept into the junction region can be defined
as Γ (t) =

∫ t

0
U 2

w(τ )dτ . This results in a Reynolds number, or non-dimensional time,
defined as ReΓ =Γ (t)/ν. In the case of constant wall velocity this expression reduces
to ReΓ =U 2

wt/ν =UwL/ν. Figure 3 shows flow visualization images at moderate
Reynolds numbers, 4 × 103 <ReΓ < 20 × 103. The images were obtained for three
different wall speeds. For each speed, images were selected for the same four values
of ReΓ . The images have been scaled by the same non-dimensional spatial scale,
defined as r∗ = rUw/ν. A movie of the Uw = 35 mm s−1 images the online is available
with/version of the paper (movie 1).

It is apparent that at each Reynolds number the visualizations from the three
different wall speeds appear to have the same shape and number of turns on the
vortex; this is a qualitative indicator of self-similarity. They suggest that the flow
field is universal for a given ReΓ when the dimensions of the structure are non-
dimensionalized with Uw/ν and the velocity is non-dimensionalized with Uw . The
visualizations at ReΓ = 24 × 103 (figure 3) show signs of three-dimensionality on the
outer turn of the vortex, in the region of high shear that separates the rapidly
rotating fluid from the moving wall and the fluid that was initially at rest over the
stationary plate. This waviness is an indicator of instability development, discussed
in § 4. Figure 4 shows for comparison flow visualizations in water and in air at
ReΓ = 4 × 103. Although there is an eight-fold difference in spatial scale between
these two images, when scaled with Uw/ν the structures appear to have a self-similar
shape.

A feature of all these visualizations, at moderately high Reynolds numbers, is
that the separation point, defined as the location where the dye streak-line leaves the
stationary plate and moves along the plate, is located directly under the vortex core. It
may be postulated that this point represents the region of maximum adverse pressure
gradient on the plate owing to the presence of the separated vortical structure above it.
There is no region of reversed flow on the stationary plate and so the separation point
is an unsteady one. Quantitative information from the flow visualizations includes
measures of the size of the developing structure. Figure 5 shows a cross-section of
the vortical structure with the core location, labelled as (XΓ , YΓ ), and measures of
the dimensions of the vortical structure, labelled as XD and YD . The origin of the
coordinate system to measure the location of the vortex core was set at the junction
of the moving wall and the stationary wall.

Measurements of these various length scales were obtained from video images of
the experiments. The start time of the motion of the belt was determined from a LED
that was in view and turned off when the belt motion commenced. Figure 6 shows
data for the vortex core scaled with respect to Uw/ν and plotted against ReΓ . The
data shows good universal collapse over a large range of ReΓ . For the experiments
conducted in air the data for YΓ can be seen departing from the universal curve in the
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Figure 3. Visualization of vortex development at the junction of a moving and a stationary
surface for wall speeds (a) Uw = 35 mm s−1, (b) Uw = 69.5 mm s−1 and (c) Uw =103 mm s−1 over
a range of ReΓ .

later stages of the experiments. This occurs when the size of the structure approaches
the depth of the tank, which inhibits the growth of the vortex in the vertical direction.
Figure 7 shows data for the diameter of the vortex core, scaled with respect to Uw/ν

and plotted against ReΓ . Again it appears that the collapse of the data is universal
over a significant Reynolds-number range.

Power-law fits to the data of the form

(XΓ , YΓ )Uw/ν = κReq
Γ = κ

(
U 2

wt/ν
)q

(3.1)

are shown fitted to the data of figures 6 and 7 and the results are listed in table 1.
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Figure 4. Visualizations of vortex development at ReΓ = 4 × 103 in (a) air and (b) water.
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Figure 5. Definition of spatial scales.

103 104 105

102

103

104

Uw = 35 mm s–1

Uw = 52.2 mm s–1

Uw = 69.5 mm s–1

Uw = 103 mm s–1

Uw = 215 mm s–1

Air Uw = 69.5 mm s–1

Air Uw = 103 mm s–1

ReΓ

X
Γ

U
w

/ν

t5/6

(a) (b)

103 104 105

102

103

104

ReΓ

Y
Γ

U
w

/ν

Figure 6. Scaling of (a) the XΓ coordinate and (b) the YΓ coordinate of the vortex core with
respect to Uw/ν, plotted against ReΓ .
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XΓ YΓ XD YD

q 1.05 0.813 0.89 0.867
κ 0.043 0.366 0.254 0.32

Table 1. Scaling-law fits.
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Figure 7. Scaling of (a) the XD coordinate and (b) the YD coordinate of the vortex core with
respect to Uw/ν, plotted against ReΓ .

The vortex appears to be growing in size at a universal rate in the vertical and
horizontal directions, as shown by the universal collapse of the data for XD and YD

with the same scaling, t5/6. It appears, however, that the vortex core XΓ moves along
the plate at a slightly faster rate, t . This would indicate that similarity scaling does not
apply to coordinates used to describe the location of the vortex core. For comparison,
figure 6(a) also shows the curve t5/6 fitted to the data for XΓ . While it would appear
that this curve is not appropriate at low ReΓ , it does start to fit the data well as the
Reynolds number increases. The growth rates of all scales are significantly faster than
the viscous rate t1/2, indicating that the structure is not a viscous bubble. To illustrate
this point, data for the vortex size is scaled against

√
νt and plotted against ReΓ in

figure 8.
The location of the vortex core and ReΓ can be measured to better than 5 %

accuracy from videotape; however, the significant source of error comes from the
variation between experiments. Each plot in figures 6–8 contains data sets from
multiple experiments at the same experimental conditions. The spread of the data
reflects the size of the experimental error. The error in XΓ , the most sensitive measure,
is of order 20 % while the error in the measures for YΓ , XD and YD appears to be of
order 10 %.

Conlon & Lichter (1995) found that if the strength of the vorticity in the wall layer
was not sufficient in relation to the outer layer of vorticity then a monopole structure
forms and propagates along the stationary wall with relatively little growth away
from the wall. Conlon & Lichter (1995) suggested that the formation of a dipole
structure is characterized by a roll-up of the wall layer, which results in a divergence
of the dipole away from the surface. In the current experiments, while the vortex



10 J. J. Allen and T. Naitoh

103 104 105

5

10

15

20

25
30

(a) (b)

Uw = 35 mm s–1

Uw = 52.2 mm s–1

Uw = 69.5 mm s–1

Uw = 103 mm s–1

103 104

5

10

15

20

ReΓ ReΓ

X
D

/(
νt

)1/
2

Y
D

/(
νt

)1/
2

Figure 8. Scaling of (a) XD and (b) YD with respect to the viscous length scale
√

νt ,
plotted against ReΓ .

structure resembles a monopole and there is no indication of the roll-up of vorticity
from the stationary surface, there is a strong growth of the primary structure away
from the wall. This perhaps indicates the subtle effect of the time-varying strength
of the vorticity that is being convected into the junction region from the Stokes
layer.

A possible source of lack of similarity in the data for the measurement of the
vortex core coordinate, XΓ , is due to the assumption that the origin of the structure
is the junction of the moving belt and the stationary one. The problem of locating the
virtual origin of the similarity structure was encountered in the experimental studies
of both Cantwell, Coles & Dimotakis (1978) and Glezer & Coles (1990). In the case
of the turbulent-spot experiment of Cantwell et al. (1978), as the boundary-layer
growth is parabolic the region of observed linear growth of the structure corresponds
to a range where the linear and parabolic curves overlap. Cantwell et al. (1978) used
experimental data to extrapolate upstream to determine the virtual origin of the
turbulent spot. In a similar vein, the turbulent-vortex-ring study of Glezer & Coles
(1990) used experimental data to extrapolate and determine the virtual origin of a
growing turbulent vortex ring, as such a vortex ring possesses an initially laminar
phase which is not described by similarity scaling.

In the current study it has been noted that as the Reynolds number becomes large
the XΓ coordinate of the vortex core appears to approach a t5/6 scaling. This in
turn suggests that the origin used to measure the location of the structure may be
incorrect. In order to locate the ‘virtual’ x origin of the structure, curves of the form
XΓ Uw/ν − β were fitted to the data for the vortex core and plotted against ReΓ .
Figure 9 shows a plot of XΓ Uw/ν = 0.42Re5/6

Γ − 150 overlaid on the experimental
data. The collapse of the experimental data onto this curve is good, which suggests
that the universal origin for this structure is offset from the junction singularity by a
distance Xo = − 150ν/Uw .

In conclusion the results from the flow-visualization data at intermendiate Reynolds
numbers indicate that the size and location of the vortex scales as t5/6. The data for
core location collapses are universally and the independent of the fixed-apparatus
dimension when scaled with Uw/ν and plotted against ReΓ . The non-dimensional
origin of the vortex during this universal behaviour is Xo = − 150ν/Uw .
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Figure 9. Determination of the virtual origin of the vortex core.

3.2. PIV results

Particle-image velocimetry experiments were performed to generate quantitative
velocity and vorticity fields during vortex development. The data-acquisition system
consisted of an argon-ion laser, an externally triggered Cohu 6600-3000 digital camera,
a General Scanning 6120DT series oscillating mirror and an Epix frame grabber.
Details of the PIV-system hardware and software, which is capable of a minimum
time difference between images equal to 0.5 ms, are contained in Allen & Smits (2001).
Figure 10(a) shows a sequence of velocity fields for a wall speed of 52 mms−1 in water
for a range of ReΓ . The defining feature of these patterns is the developing rotational
core of the vortex. The region of high shear between the separating vortex and the
stationary wall is evident from the velocity field and is highlighted in figure 10(a)
for ReΓ = 8 × 103. It is also evident from these velocity fields that there is no region
of reversed flow over the stationary plate. Figure 10(b) shows the vorticity fields
associated with the velocity fields. The plots show the non-dimensional vorticity,
ω =Ων/U 2

w . They have two important features: the rolling-up of the Stokes-layer
vorticity from the moving wall into a coherent spiral, and the production of strong
secondary vorticity on the stationary plate. The vorticity distributions do not show
any evidence of dipole formation. As mentioned earlier the secondary vorticity is
generated to preserve the no-slip condition over the stationary plate. Figure 11 shows
contour plots of velocity magnitude normalized with Uw , for three different wall
speeds at ReΓ = 8 × 103 and at ReΓ =16 × 103. The plots have been scaled spatially
with Uw/ν. The plots at equal ReΓ show similar shapes and distributions of non-
dimensional velocity. The plots for the lowest wall speed show better resolution, as
the physical scale of the vortex is larger than for the higher-wall-speed cases.

3.3. Dynamics

The questions that arise from experimental core and PIV data are:
(i) under what condition will a vortex form?
(ii) can the observed growth rates be related to the dynamics of the structure

formation?
In order to explain the formation process a description is required that begins with

the low-ReΓ viscous-dominated flow before transitioning to the high-ReΓ inertia-
dominated flow. Cantwell (1986) considered the transient motion of a viscous fluid
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Figure 10. (a) Velocity and (b) vorticity fields for a wall speed Uw = 52 mm s−1 at
ReΓ = 4000, 8000, 16 000.

forced from an initial state of rest in an effort to clarify the events leading to the
characteristic vortical structure at the head of the jet. A key element in this analysis
was the absence of apparatus-length scales. In the planar analysis Cantwell considered
the jet to be produced by a time-varying point force applied at the domain origin,
defined as F (x, y; t/ρ) = (Mf (t)δ(x)δ(y), 0), directed along the x axis. The associated
impulse of the jet was computed as the integal of the forcing function. The quantity M

is a force-amplitude parameter and has the dimensions L3T −n. The impulse applied to
the flow is I (t) = Mt (n−1)/(n − 1). Selection of the type of forcing to produce the jet –
impulse, step or ramp then defines the value of the exponent n. Cantwell utilized
similarity groups to render the Stokes equations and the applied impulse invariant
under transformation, in order to reduce the number of independent variables needed
to describe the system. Cast in terms of similarity variables, the Stokes equations were
found to depend on a control parameter ReI , which is defined in terms of the impulse
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Figure 11. Normalized velocity fields for (a) Uw = 52 mm s−1 and (b) Uw = 69.5mms−1 and
(c) 103 mm s−1 for ReΓ = 8000 and ReΓ = 16 000.

that has been applied to the flow: ReI = (I (t)t)2/3/(4νt) = M2/3t2n/3−1/((n − 1)2/34ν).
When considering the evolution of a self-similar structure, particle pathlines or entrain-
ment diagrams are very useful for identifying a change in the flow topology. Substitut-
ing similarity variables into the expressions for the unsteady trajectory of the particles,
Cantwell produced a set of coupled linear equations where the critical points and
characteristics in similarity variables were functions of the parameter ReI . He solved
for three different flow topologies as a function of two critical ReI parameters. These
Reynolds numbers represented bifurcation boundaries. As mentioned earlier, the first
bifurcation marks the point when the jet transitions from a non-rotating slug, which
in the entrainment diagram is manifested as a single node, to a topology that consists
of an on-axis saddle and off-axis nodes. For a constant impulse jet this occurs at
ReI � 1.2. The second bifurcation point is at the transition of the off-axis nodes into
foci at ReI � 2.2. It is this second transition which produces the characteristic evolving
mushroom at the head of the jet. Cantwell showed that a similar procedure, based
on the lack of an experimental length scale and applied-impulse invariance, could be
used to develop similarity groups that rendered the Euler equations, and the impulse,
invariant to transformation. The forms of these similarity groups are

ξ =
x

M1/3tn/3
, U (ξ ) =

u

M1/3t1−n/3
, P (ξ ) =

p/ρ

M2/3t2(n/3−1)
, (3.2)

where M is the force-amplitude parameter and the exponent n again is defined by the
nature of the forcing. As the Reynolds numbers for the current experiments are high,
it would be expected that inertial effects would dominate the flow.

The point source of momentum and the absence of experimental length scales in
Cantwell (1986) are different boundary conditions from that of the current experiment;
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Figure 12. Self-similar scaling to collapse the vortex-diameter data.

however, many features of the current study display starting-jet characteristics. If one
considers the current transient problem with boundary conditions U (x, y) = 0, t < 0,
U (|x| <X/2, 0) = Uw and U (|x| >X/2, 0) = 0 for t > 0 this corresponds to a moving
wall of finite length X in an infinite domain. The moving wall acts as a soure of
momentum via the action of the shear force through the Stokes-layer forming over
the plate. The stationary plate will act as a momentum sink, and in the far field one
would expect the flow field to have the form of a dipole. As the impulse is being
imparted by the moving wall, a crude approximation for the momentum being created
can be derived from a Stokes-layer description of the velocity field. The rate of flux
of momentum into the corner junction can be derived from

dMmtm(t)/dt =

∫ ∞

0

U 2
Stokes(y, t) dy, (3.3)

where y is the wall-normal distance. Using the analytic expression for the velocity
layer forming over an impulsively started plate, (3.3) can be reduced to

Mmtm(t) = 4.256
√

νU 2
wt3/2. (3.4)

From Cantwell (1986), a Reynolds number based on impulse is ReI = (I (t)t)2/3/
(4tν). Substitution of the approximation for the impulse that the moving belt applies
to the flow and assuming symmetry across the x axis results in

ReI = 0.656
(
U 2

wt/ν
)2/3

= 0.656 Re2/3
Γ . (3.5)

If we relate the predicted momentum flux to the impulse I (t) = Mt (n−1)/(n − 1) it
implies that 3/2 = n − 1, hence n= 5/2. Physically this means that the action of the
moving plate is midway between a steady jet and a ramp jet. It also results in a
definition of M:

M = 6.384
√

νU 2
w. (3.6)

Using the estimation for the applied impulse results in an explicit set of similarity
groups for the junction flow at high Reynolds numbers,

ξ = x
/(

M1/3t5/6
)
, η = y

/(
M1/3t5/6

)
, U = u

/(
M1/3t−1/6

)
. (3.7)

This analysis suggests that the spatial scale of the flows should develop as t5/6,
which is very close to the experimental data for the core diameter. Figure 12 shows
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Figure 13. Velocity-field contours using similarity scaling for Uw = 52 mm s−1:
(a) ReΓ = 4000, (b) 8000 and (c) 16 000.

data for the vortex diameter scaled with 0.54M1/3t5/6. The collapse is good for a
given ReΓ , and the data appears to be invariant with respect to ReΓ , as predicted for
high-Reynolds-number flows.

As well as collapsing the flow-visualization data, this high-Reynolds-number scaling
argument also suggests that the velocity fields scale as M1/3t−1/6. The plots in figure 13
show velocity data for three Reynolds numbers, scaled as U = u/(0.53M1/3t−1/6). The
spatial scale has been transformed using ξ = x/(0.53M1/3t5/6) and η = y/(0.53M1/3t5/6)
with the origin adjusted as described above.

All three plots show a vortex core and a region of high shear between the vortex
core and the wall boundary. The vortex-core location for the ReΓ = 4000 case does
not appear to have reached a constant value. For the ReΓ =8000 and 16 000 cases
the vortex core appears to be located at (0.35, 0.4). The trend for all three cases
is for the region of high-intensity velocity contours separating the vortex core from
the stationary boundary to become smaller as Reτ increases. This may indicate a
progression toward a universal self-similar shape which is independent of Reynolds
number as the Reynolds number becomes high enough. It is suggested that the rate at
which the velocity magnitude approachs its asymptote is slightly slower than the rate
at which the shape appraches its limit. In conclusion, self-similarity scaling, derived
from Euler’s equations, has been relatively successful in collapsing the experimental
data to produce a universal description of the flow structure. The lack of exact
self-similarity is thought to be due to finite-Reynolds-number effects.

3.4. Entrainment diagram

One problem with the interpretation of contour patterns of velocity fields or streamline
patterns is that their form depends on the translation velocity of the observer.
However, if self-similarity applies, a universal, invariant, picture of the flow field can
be obtained from a description of the particle trajectories. The particles in this sense
are assumed to be passive, ideal, massless and to track the flow field exactly. The
equations for two-dimensional particle paths in physical coordinates are expressed as

dx/dt = u(x, y, t), dy/dt = v(x, y, t), (3.8)

which can be recast in terms of the suggested similarity variables (equations (3.7)) as

dξ/dτ = U (ξ, η) − (5/6)ξ, dη/dτ = V (ξ, η) − (5/6)η (3.9)

Cantwell (1986) showed that the entrainment diagram is invariant with respect to
a translation velocity commensurate with the similarity scaling, i.e. if a translation
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Figure 14. Entrainment diagram for Uw = 52.2 mm s−1 at (a) ReΓ = 8000 and
(b) ReΓ =16 000.

defined as

xi = x̂i − αM1/3t5/6, t = t̂ , ui = ûi − (5/6)αM1/3t−1/6 (3.10)

is applied to the data then the equation for particle paths, dξ̂ /dτ̂ = Û (ξ ) − (5/6)ξ̂ ,
still has the same form as (3.9) and the entrainment diagram is invariant translation.
The equations for particle trajectories are invariant with respect to the time-evolving
Reynolds number, as they were derived from Euler’s equations. This is indicated in
the Reynolds-number invariance of the contour plots in figure 13. While we are not
in a position to solve these equations analytically, we can construct a picture of the
entrainment diagram via a technique of isolines applied to the experimental data,
as described in Cantwell et al. (1978) and Glezer & Coles (1990). Figure 14 shows
entrainment diagrams for ReΓ =8000 and 16 000, for a wall speed of Uw = 52.2 mm s−1,
generated using the technique of isolines applied to the PIV data. The essential feature
of both these plots is a focus. Figure 14(a) shows a focus located at (ξ, η) � (0.38, 0.38)
and what appears to be a saddle located on the horizontal axis at approximately
ξ � 0.48. The entrainment diagram bears a strong resemblance to the final entrainment
diagram of the viscous jet of Cantwell (1986). Figure 14(b) provides better spatial
resolution of the entrainment pattern and shows a focus at (ξ, η) � (0.40, 0.30). The
difference between figures 14(a) and 14(b) is thought to be a function of cycle-to-cycle
experimental variation. Figure 14(b) also allows one to make an accurate assessment
of the topology close to the wall. Figure 14(b) shows the presence of a saddle, located
a short distance away from the stationary wall surface at (ξ, η) ≈ (0.4, 0.03); the
junction singularity appears as a node at (ξ, η) = (0.2, 0).

A graphical interpretation of the self-similar entrainment diagram is shown in
figure 15. The essential features are a node A, a saddle B and a focus C. The
particle pathlines indicate that the majority of fluid is entrained into the vortex core
through the rear of the vortex. There is, however, a finite amount of fluid, close to
the stationary plate surface, that is not entrained into the vortex core. This is the
viscous boundary-layer that is developing over the stationary plate. This material
appears to be heading towards the junction singularity, which appears as a sink node
when viewed in similarity coordinates. Hence, in conclusion, the development process
for the junction vortex is a progression from an initially viscous-dominated flow to
an inertially dominated structure for ReΓ > 1000. The final self-similar entrainment
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Figure 15. Interpretation of a self-similar entrainment diagram at high ReΓ .
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Figure 16. Turbulent vortex at ReΓ = 110 × 103: (a) streamwise cross-section and
(b) spanwise cross-section.

diagram, for high Reynolds numbers, bears a strong resemblence to the topology
identified by Cantwell (1986) as representing the commencement of the characteristic
rotational instability at the head of a viscous jet. It is conjectured that for ReΓ < 1000
one should observe on evolving flow topology similar to that identified by Cantwell
(1986), i.e. if the Reynolds number is low enough one should observe a the variation in
the flow topology from a non-evolving vortex front into the spiral structure observed
in the current experiments. The control parameter for this process is the time-evolving
Reynolds number, which can be related to the impulse that the plate has applied to
the flow. A limitation of the current experiments is that the minimum ReΓ is too high
to investigate this regime. It is suggested that a direct numerical simulation would be
the best way to approach this low-ReΓ range.

4. Instability development
4.1. Flow visualisation

At ReΓ � 20 × 103 waves begin to appear on the outer turn of the vortex structure,
as illustrated in figure 1(b). The amplification of these waves leads to the eventual
transition to a fully three-dimensional structure at ReΓ � 40 × 103. Figure 16(a) shows
a strongly three-dimensional vortex, at ReΓ = 110 × 103, which is entraining fluid
around its perimeter. Figure 16(b) shows a spanwise visualization through the core
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(a) ReΓ  = 4 × 103 (b) ReΓ  = 8 × 103 (c) ReΓ  = 12 × 103

Figure 17. Developing instability for a wall speed Uw = 35 mm s−1 at (a) ReΓ = 4 × 103,
(b) ReΓ = 8 × 103 and (c) ReΓ = 12 × 103.

of the vortex. The transition to turbulence of the piston vortex was remarked on
by Tabaczynski et al. (1970), but no detailed description of a transition mechanism
was provided. Unstable waves were observed by Allen & Auvity (2002) on the vortex
forming in front of a moving piston, and the suggested mechanism for the formation
of these instabilities was centrifugal. In the context of start-up cavity-flow experiments
Koseff & Street (1984b) noted that during the cavity start-up the junction vortex,
described as a ‘cylinder of high vorticity fluid’, became unstable. Torroidal vortices
were observed by Koseff & Street (1984b) on the periphery of the main vortex core
and they noted that the wavelength of the instability decreased as their belt speed
increased. In order to examine the detailed structure of the instability, a laser cross-
section was taken in a plane inclined at 43◦ to the moving wall. The laser was used
to illuminate a spanwise slice through the vortex. This was done in order to have the
vortex core in the visualization plane for as long as possible. Fluorescent dye was
placed along the edge of the stationary plate before the wall was set in motion.

The instability waves initially appear on the outer turn of the vortex and are
ingested into the vortex core. Figure 17 shows the development of the instability waves
as ReΓ increases for a given wall speed. The spanwise length shown in the photo-
graphs is 0.16 of the total belt width. It can be seen that the wavelength of the
instability remains fixed while the amplitude grows. A movie of this process is available
with the online version of the paper (movie 2). The nonlinear growth of these waves
eventually results in the breakdown of the primary core. Significant care had to be
taken during the execution of experiments as the instability growth rate and wave-
length are sensitive to background disturbances. Once the structures have formed, the
wavelength does not vary as time increases. No wavelength doubling was observed.
Once a wavelength has been established it dominates the flow.

As the wall speed is increased, the instability wavelength becomes shorter. Figure 18
shows instability waves at ReΓ = 12 × 103 for three different wall speeds. The presence
of mushroom structures on the outer turn of the vortex can be clearly seen in
figures 18(b) and 18(c). This would suggest that a significant reorientation of the
spanwise vorticity is occurring. In the range of wall speeds from 17 to 30 mms−1 in
water, the instability wave was hard to detect as the structure was extremely sensitive
to background disturbances. In the range of wall speeds from 35 to 103 mm s−1, the
wavelength was relatively easy to measure. Images such as those in figure 18 were
processed with a discrete Fourier transformation to extract instability wavelength in-
formation. The range of wavenumbers was somewhat scattered due to the irregularity
of the streakline profile. Figure 19 shows data for the amplified wavelength, normalized
with respect to ReU =Uw/ν and plotted with respect to ReU ; ReU represents a
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(a) Uw = 3.5 cm s–1 (b) Uw = 6.9 cm s–1 (c) Uw = 10.3 cm s–1

Figure 18. Spanwise instability at ReΓ =12 × 103 for wall speeds (a) 35 mm s−1

(b) 69.5 mm s−1 and (c) 103 mm s−1.
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Figure 19. Non-dimensional wavelength of the spanwise instability plotted with respect to
ReU : �, flow visualization; �, PIV data.

unit Reynolds number. The flow visualization data, seen as circles, show a relative
insensitivity to ReU . The error bars indicate the scatter in the range of wavelengths
for experiments with a given wall speed. The trend of a reduction in wavelength with
increasing wall speed was also observed in the study of Vogel et al. (2003).

4.2. Instability strength

To determine the strength of these instability structures, PIV measurements were
performed in a plane parallel with the axis of the primary core. Figure 20(a) shows a
visualization image of the vortical structure on the outer turn of the primary vortex.
Figures 20(b) and 20(c) show the corresponding velocity and vorticity fields. The
vorticity Ω has been normalized with U 2

w/ν. The peak strength of the instability is of
the same order as the peak-vorticity measurements in figure 10. This would indicate
that a significant reorientation and stretching of the vorticity has occurred on the
separating vortex sheet.
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Figure 20. Görtler vortex: (a) visualization, (b) velocity field and (c) vorticity distribution.
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Figure 21. (a) Rayleigh quotient evaluated from PIV data and (b) a cross-section of the
two-dimensional velocity field.

4.3. Instabilty mechanism

As mentioned in the introduction, this type of flow has topology and boundary-
condition similarities with cavity flows; hence it would seem logical to look to the
stability of cavity flows for elucidation of a mechanism for the instability observed in
the current experiments. Instability discussion in relation to cavity flows has typically
revolved around the role of the downstream secondary eddy rather than the effect
of the corner singularity. From the flow-visualization experiments it appears that
the instability has its source in the region of high shear on the outer turn of the
primary vortex. The Rayleigh criteria for the stability of inviscid flows can be used
to indicate whether a flow is potentially unstable. Figure 21(a) shows the Rayleigh
quotient, Φ = d(rVθ )/dr , evaluated from an instantaneous velocity field; the origin
of cylindrical coordinates was set at the vortex core. Potential instability of the flow
corresponds to Φ < 1, the region of high shear where the vortex separates from the
stationary surface.

Figure 21(b) shows a sample PIV data field. Overlaid on this plot is a high-resolution
velocity profile in the separating region. This profile resembles a wall jet subject to
concave curvature. Such a wall jet is potentially unstable owing to the presence of
centrifugal forces (Floryan & Saric 1984). The inner flow, the section of the flow
between the wall and the point of maximum velocity, is where the instability will
first develop. The instability control parameter for this type of flow is the Görtler
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number, Go = U∞(δ/ν)
√

δ/R, where U∞ is the maximum velocity of the wall jet, R is the
radius of curvature and δ is the wall-jet thickness. The criterion for the development of
Görtler vortices in the concave wall jet is when Go > 1. There is no critical wavenumber
and the characteristics of the instability vortices are determined by the disturbance
growth process. The wavelength that develops is the one which has the most amplified
rate of growth. Experiments to determine the natural wavelength of Görtler vortices
have been found to be extremely sensitive to the properties of the apparatus and
its flow field. Bippes (1978) recorded that the wavelength of the Görtler cells in
experiments corresponds to those which have the highest amplification rates from
linear theory. Once the wavelength is established it is preserved during downstream
development of the cells. To support the argument that the instability observed in
the current experiments is Taylor–Görtler, an attempt was made to compare the
flow-visualization wavelength with theoretical predictions. Floryan (1986) argued that
the most amplified wavelength changes with Görtler number and is a function of a
dimensionless wavelength parameter Λ defined as Λ =F 1/3λ1/3ν−1(λ/R)1/2; F is the
dimensional flux of the external momentum; (see Glauert 1956), λ is the dimensional
wavelength, ν is the kinematic viscosity and R is the radius of the wall curvature.
Floryan (1986) showed that the values of Λ for maximum amplification rate are
in the range 48–85 when the Görtler number varies from 5 to 20. While this does
not provide a critical wavelength or Görtler number, it does bound the possible
instability wavelengths. In the current experiments if we assume a ‘quasi-steady’ flow,
in that we assume that the rate of growth of the instability is considerably faster
than the rate of growth of the vortex, F =

∫ ∞
0

u(
∫ ∞

0
u2 dy) dy can be approximated

from the two-dimensional PIV velocity field. Making an estimate of R and δ from the
velocity-field data, estimates can then be made for the instantaneous Görtler number
and the associated non-dimensional wavelength that has the most rapid growth rate.
Using our estimates for F and R, an estimate of the physical wavelength λ of the
instability can be made. Results of this analysis are shown, denoted by squares, in
figure 19. Although this analysis is coarse and relies on a quasi-steady assumption,
the wavelengths observed in flow-visualization experiments and the predictions from
PIV data using this technique are of the same order and show similar trends; hence
it is reasonable to conclude that the mechanism for the instability of the junction
vortex is Görtler, owing to the presence of centrifugal forces.

5. Conclusions
Experiments have shown that for ReΓ > 103 a vortex forms close to the junction

where a moving wall meets a stationary wall. The data reveals that while the vortical
structure is small in relation to the fixed-apparatus length scale, the size and velocity
field of the vortex appear to scale in a self-similar fashion. The rate of growth is related
directly to the impulse that the moving wall applies to the flow, which results in a
prediction that the structure should grow as t5/6. This prediction is in good agreement
with the experimental results. Self-similar scaling has also been used to collapse the
PIV data and produce a universal velocity field for high-Reynolds-number flows. The
self-similar entrainment diagram for this high-Reynolds-number flow was determined
via the use of isoclines. This technique produces a pattern that consists of a focus, a
node at the junction singularity and a saddle close to the stationary plate surface. It
is suggested the the mechanism for vortex formation is that the flow passes though
a number of low-Reynolds-number states, similar to that of a viscous jet, before
attaining the final high-Reynolds-number form in the current experiments.
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The three-dimensional spanwise instability that forms on the outer turn of this struc-
ture has been quantified with flow visualization and PIV. The instability was found
to be extremely sensitive to disturbances and the wavelength of the instability scales
inversely with wall velocity. Using experimental PIV data fields to make an estimate
of the most unstable modes, based on linear stability, results in a reasonable correla-
tion with the flow visualization results for the spanwise instability. The instability
is centrifugal and the nonlinear growth of these structures results in the eventual
turbulent breakdown of the structure.

The authors would like to thank Professor Smits at Princeton University and to
acknowledge support from NSF-CTS grant number 9706902.
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